

Torque

Torque, τ , is the tendency of a force to rotate an object about some axis.

Torque is a vector, but we will deal with its magnitude here:

$$\tau = |\vec{r}| |\vec{F}| \sin \varphi$$

F Is the force

 $\boldsymbol{\varPhi}$ is the angle the force makes with the horizontal

r is the distance between the rotation axis and the point of application of \vec{F} .

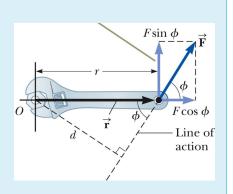
There is no unique value of the torque on an object.

Its value depends on the choice of a rotational axis.

Mustafa A-Zyout - Philadelphia Universit

7-Oct-2

2


Torque, cont

• The moment arm, d, is the perpendicular distance from the axis of rotation to a line drawn along the direction of the force.

$$d = r sin \varphi$$

• The horizontal component of the force $(Fcos\varphi)$ has no tendency to produce a rotation.

ustafa A-Zyout - Philadelphia University

7-Oct-2

Δ

•Torque will have direction. •If the turning tendency of the force is counterclockwise, the torque will be positive. •If the turning tendency is clockwise, the torque will be negative. •force \vec{F}_1 will tend to cause a counterclockwise rotation about O. •The force \vec{F}_2 will tend to cause a clockwise rotation about O. $\sum \tau = \tau_1 + \tau_2 = F_1 d_1 - F_2 d_2$ Mustafa A-Zyout - Philadelphia University

_

Torque vs. Force

- Forces can cause a change in translational motion.
 - o Described by Newton's Second Law
- Forces can cause a change in rotational motion.
 - $\circ\,$ The effectiveness of this change depends on the force and the moment arm.
 - The change in rotational motion depends on the torque.

Mustafa A-Zyout - Philadelphia University

7-Oct-25

6

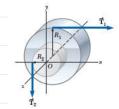
Torque Units

• The SI units of torque are N.m.

- Although torque is a force multiplied by a distance, it is very different from work and energy.
- $\circ~$ The units for torque are reported in $N.\,m$ and not changed to Joules.

Mustafa A-Zyout - Philadelphia University

7-Oct-25


7

The Net Torque on a Cylinder

Saturday, 30 January, 2021 16:19

Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan.

- R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014.
- J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY, 2014.
- H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016.
- H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013.

- \circ What is the net torque acting on the cylinder about the rotation axis (which is the z axis)?
- \circ Suppose $T_1=5~N,\,R_1=1~m,\,T_2=15~N$ and $R_2=0.5~m$. What is the net torque about the rotation axis, and which way does the cylinder rotate starting from rest?

$$\sum \tau = \tau_1 + \tau_2 = R_2 T_2 - R_1 T_1$$

Substitute the given values:

$$\sum \tau = (0.50 \text{ m})(15 \text{ N}) - (1.0 \text{ m})(5.0 \text{ N}) = 2.5 \text{ N} \cdot \text{m}$$

Because this net torque is positive, the cylinder begins to rotate in the counterclockwise direction.

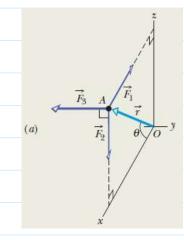
10-04-Torque Page 1

The Torque Vector Saturday, 30 January, 2021 16:24 Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan. R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 201 J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY,2014. H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016. H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 20
A force of $\vec{F} = 2\hat{\imath} + 3\hat{\jmath}$ (N) is applied to an object that is pivoted about a fixed axis aligned along the z
coordinate axis. The force is applied at a point located at $\vec{r} = 4\hat{\imath} + 5\hat{\jmath}$ (m). Find the torque applied to
the object.
$\vec{\tau} = \vec{\mathbf{r}} \times \vec{\mathbf{f}} = [(4.00 \hat{\mathbf{i}} + 5.00 \hat{\mathbf{j}}) \mathrm{m}] \times [(2.00 \hat{\mathbf{i}} + 3.00 \hat{\mathbf{j}}) \mathrm{N}]$ $\vec{\tau} = [(4.00)(2.00) \hat{\mathbf{i}} \times \hat{\mathbf{i}} + (4.00)(3.00) \hat{\mathbf{i}} \times \hat{\mathbf{j}}$
5.049 to 32 49 22 CONO 52 0 CT
+ $(5.00)(2.00)\hat{\mathbf{j}} \times \hat{\mathbf{i}} + (5.00)(3.00)\hat{\mathbf{j}} \times \hat{\mathbf{j}}] \mathrm{N} \cdot \mathrm{m}$
$\vec{\tau} = [0 + 12.0\hat{\mathbf{k}} - 10.0\hat{\mathbf{k}} + 0]\mathbf{N} \cdot \mathbf{m} = 2.0\hat{\mathbf{k}}\mathbf{N} \cdot \mathbf{m}$

Torque on a particle due to a force

Saturday, 30 January, 2021 16:19

Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan.


- R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014.
- H. D. Young and R. A. Freedman, *University Physics with Modern Physics*, 14th ed., PEARSON, 2016.
- H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013.

Three forces, each of magnitude 2N, act on a particle, as shown. The particle is in the plane at point A given by position vector \vec{r} , where r = 3m and $\theta = 30^{\circ}$. What is the torque, about the origin 0, due to each force?

$$\tau_1 = rF_1 \sin \phi_1 = (3.0 \text{ m})(2.0 \text{ N})(\sin 150^\circ) = 3.0 \text{ N} \cdot \text{m},$$

$$\tau_2 = rF_2 \sin \phi_2 = (3.0 \text{ m})(2.0 \text{ N})(\sin 120^\circ) = 5.2 \text{ N} \cdot \text{m},$$
and
$$\tau_3 = rF_3 \sin \phi_3 = (3.0 \text{ m})(2.0 \text{ N})(\sin 90^\circ)$$

$$= 6.0 \text{ N} \cdot \text{m}.$$
(Answer)

